Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 19(9): 2068-2074, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227537

RESUMO

JOURNAL/nrgr/04.03/01300535-202409000-00040/figure1/v/2024-01-16T170235Z/r/image-tiff Plaques of amyloid-ß (Aß) and neurofibrillary tangles are the main pathological characteristics of Alzheimer's disease (AD). However, some older adult people with AD pathological hallmarks can retain cognitive function. Unraveling the factors that lead to this cognitive resilience to AD offers promising prospects for identifying new therapeutic targets. Our hypothesis focuses on the contribution of resilience to changes in excitatory synapses at the structural and molecular levels, which may underlie healthy cognitive performance in aged AD animals. Utilizing the Morris Water Maze test, we selected resilient (asymptomatic) and cognitively impaired aged Tg2576 mice. While the enzyme-linked immunosorbent assay showed similar levels of Aß42 in both experimental groups, western blot analysis revealed differences in tau pathology in the pre-synaptic supernatant fraction. To further investigate the density of synapses in the hippocampus of 16-18 month-old Tg2576 mice, we employed stereological and electron microscopic methods. Our findings indicated a decrease in the density of excitatory synapses in the stratum radiatum of the hippocampal CA1 in cognitively impaired Tg2576 mice compared with age-matched resilient Tg2576 and non-transgenic controls. Intriguingly, through quantitative immunoelectron microscopy in the hippocampus of impaired and resilient Tg2576 transgenic AD mice, we uncovered differences in the subcellular localization of glutamate receptors. Specifically, the density of GluA1, GluA2/3, and mGlu5 in spines and dendritic shafts of CA1 pyramidal cells in impaired Tg2576 mice was significantly reduced compared with age-matched resilient Tg2576 and non-transgenic controls. Notably, the density of GluA2/3 in resilient Tg2576 mice was significantly increased in spines but not in dendritic shafts compared with impaired Tg2576 and non-transgenic mice. These subcellular findings strongly support the hypothesis that dendritic spine plasticity and synaptic machinery in the hippocampus play crucial roles in the mechanisms of cognitive resilience in Tg2576 mice.

2.
Front Immunol ; 14: 1130044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187754

RESUMO

A complex network of interactions exists between the olfactory, immune and central nervous systems. In this work we intend to investigate this connection through the use of an immunostimulatory odorant like menthol, analyzing its impact on the immune system and the cognitive capacity in healthy and Alzheimer's Disease Mouse Models. We first found that repeated short exposures to menthol odor enhanced the immune response against ovalbumin immunization. Menthol inhalation also improved the cognitive capacity of immunocompetent mice but not in immunodeficient NSG mice, which exhibited very poor fear-conditioning. This improvement was associated with a downregulation of IL-1ß and IL-6 mRNA in the brain´s prefrontal cortex, and it was impaired by anosmia induction with methimazole. Exposure to menthol for 6 months (1 week per month) prevented the cognitive impairment observed in the APP/PS1 mouse model of Alzheimer. Besides, this improvement was also observed by the depletion or inhibition of T regulatory cells. Treg depletion also improved the cognitive capacity of the APPNL-G-F/NL-G-F Alzheimer´s mouse model. In all cases, the improvement in learning capacity was associated with a downregulation of IL-1ß mRNA. Blockade of the IL-1 receptor with anakinra resulted in a significant increase in cognitive capacity in healthy mice as well as in the APP/PS1 model of Alzheimer´s disease. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals, highlighting the potential of odors and immune modulators as therapeutic agents for CNS-related diseases.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Mentol/uso terapêutico , Precursor de Proteína beta-Amiloide/genética , Linfócitos T Reguladores , Camundongos Transgênicos , Cognição , Imunidade
3.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163135

RESUMO

The cell cycle consists of successive events that lead to the generation of new cells. The cell cycle is regulated by different cyclins, cyclin-dependent kinases (CDKs) and their inhibitors, such as p27Kip1. At the nuclear level, p27Kip1 has the ability to control the evolution of different phases of the cell cycle and oppose cell cycle progression by binding to CDKs. In the cytoplasm, diverse functions have been described for p27Kip1, including microtubule remodeling, axonal transport and phagocytosis. In Alzheimer's disease (AD), alterations to cycle events and a purported increase in neurogenesis have been described in the early disease process before significant pathological changes could be detected. However, most neurons cannot progress to complete their cell division and undergo apoptotic cell death. Increased levels of both the p27Kip1 levels and phosphorylation status have been described in AD. Increased levels of Aß42, tau hyperphosphorylation or even altered insulin signals could lead to alterations in p27Kip1 post-transcriptional modifications, causing a disbalance between the levels and functions of p27Kip1 in the cytoplasm and nucleus, thus inducing an aberrant cell cycle re-entry and alteration of extra cell cycle functions. Further studies are needed to completely understand the role of p27Kip1 in AD and the therapeutic opportunities associated with the modulation of this target.


Assuntos
Doença de Alzheimer/patologia , Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p27/química , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Processamento de Proteína Pós-Traducional , Doença de Alzheimer/metabolismo , Animais , Humanos
4.
Pharmaceutics ; 15(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36678710

RESUMO

Docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in the brain, is essential for successful aging. In fact, epidemiological studies have demonstrated that increased intake of DHA might lower the risk for developing Alzheimer's disease (AD). These observations are supported by studies in animal models showing that DHA reduces synaptic pathology and memory deficits. Different mechanisms to explain these beneficial effects have been proposed; however, the molecular pathways involved are still unknown. In this study, to unravel the main underlying molecular mechanisms activated upon DHA treatment, the effect of a high dose of DHA on cognitive function and AD pathology was analyzed in aged Tg2576 mice and their wild-type littermates. Transcriptomic analysis of mice hippocampi using RNA sequencing was subsequently performed. Our results revealed that, through an amyloid-independent mechanism, DHA enhanced memory function and increased synapse formation only in the Tg2576 mice. Likewise, the IPA analysis demonstrated that essential neuronal functions related to synaptogenesis, neuritogenesis, the branching of neurites, the density of dendritic spines and the outgrowth of axons were upregulated upon-DHA treatment in Tg2576 mice. Our results suggest that memory function in APP mice is influenced by DHA intake; therefore, a high dose of daily DHA should be tested as a dietary supplement for AD dementia prevention.

5.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769380

RESUMO

Despite the well-accepted role of the two main neuropathological markers (ß-amyloid and tau) in the progression of Alzheimer's disease, the interaction and specific contribution of each of them is not fully elucidated. To address this question, in the present study, an adeno-associated virus (AAV9) carrying the mutant P301L form of human tau, was injected into the dorsal hippocampi of APP/PS1 transgenic mice or wild type mice (WT). Three months after injections, memory tasks, biochemical and immunohistochemical analysis were performed. We found that the overexpression of hTauP301L accelerates memory deficits in APP/PS1 mice, but it did not affect memory function of WT mice. Likewise, biochemical assays showed that only in the case of APP/PS1-hTauP301L injected mice, an important accumulation of tau was observed in the insoluble urea fraction. Similarly, electron microscopy images revealed that numerous clusters of tau immunoparticles appear at the dendrites of APP/PS1 injected mice and not in WT animals, suggesting that the presence of amyloid is necessary to induce tau aggregation. Interestingly, these tau immunoparticles accumulate in dendritic mitochondria in the APP/PS1 mice, whereas most of mitochondria in WT injected mice remain free of tau immunoparticles. Taken together, it seems that amyloid induces tau aggregation and accumulation in the dendritic mitochondria and subsequently may alter synapse function, thus, contributing to accelerate cognitive decline in APP/PS1 mice.


Assuntos
Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/efeitos adversos , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Mitocôndrias/patologia , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Fosforilação , Presenilina-1/fisiologia , Sinapses , Proteínas tau/genética
6.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502030

RESUMO

Understanding the mechanisms involved in cognitive resilience in Alzheimer's disease (AD) represents a promising strategy to identify novel treatments for dementia in AD. Previous findings from our group revealed that the study of aged-Tg2576 cognitive resilient individuals is a suitable tool for this purpose. In the present study, we performed a transcriptomic analysis using the prefrontal cortex of demented and resilient Tg2576 transgenic AD mice. We have been able to hypothesize that pathways involved in inflammation, amyloid degradation, memory function, and neurotransmission may be playing a role on cognitive resilience in AD. Intriguingly, the results obtained in this study are suggestive of a reduction of the influx of peripheral immune cells into the brain on cognitive resilient subjects. Indeed, CD4 mRNA expression is significantly reduced on Tg2576 mice with cognitive resilience. For further validation of this result, we analyzed CD4 expression in human AD samples, including temporal cortex and peripheral blood mononuclear cells (PBMC). Interestingly, we have found a negative correlation between CD4 mRNA levels in the periphery and the score in the Mini-Mental State Exam of AD patients. These findings highlight the importance of understanding the role of the immune system on the development of neurodegenerative diseases and points out to the infiltration of CD4+ cells in the brain as a key player of cognitive dysfunction in AD.


Assuntos
Doença de Alzheimer/metabolismo , Antígenos CD4/genética , Córtex Cerebral/metabolismo , Cognição , Inflamação , Leucócitos Mononucleares/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/fisiopatologia , Animais , Córtex Cerebral/fisiologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Córtex Pré-Frontal/metabolismo , Lobo Temporal/metabolismo
7.
Prog Neurobiol ; 191: 101818, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32380223

RESUMO

Clinical studies revealed that some aged-individuals accumulate a significant number of histopathological Alzheimer´s disease (AD) lesions in their brain, yet without developing any signs of dementia. Animal models of AD represent suitable tools to identify genes that might promote cognitive resilience and hence, this study first set out to identify cognitively resilient individuals in the aged-Tg2576 mouse model. A transcriptomic analysis of these mice identified PLA2G4E as a gene that might confer resistance to dementia. Indeed, a significant decrease in PLA2G4E is evident in the brain of late-stage AD patients, whereas no such changes are observed in early stage patients with AD neuropathological lesions but no signs of dementia. We demonstrated that adeno-associated viral vector-mediated overexpression of PLA2G4E in hippocampal neurons completely restored cognitive deficits in elderly APP/PS1 mice, without affecting the amyloid or tau pathology. These PLA2G4E overexpressing APP/PS1 mice developed significantly more dendritic spines than sham-injected mice, coinciding with the cognitive improvement observed. Hence, these results support the idea that a loss of PLA2G4E might play a key role in the onset of dementia in AD, highlighting the potential of PLA2G4E overexpression as a novel therapeutic strategy to manage AD and other disorders that course with memory deficits.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Espinhas Dendríticas , Terapia Genética , Fosfolipases A2 do Grupo IV/fisiologia , Fosfolipases A2 do Grupo IV/uso terapêutico , Hipocampo , Memória Espacial , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
Mol Neurobiol ; 57(2): 798-805, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31473905

RESUMO

The brain depends on glucose as a source of energy. This implies the presence of glucose transporters, being GLUT1 and GLUT3 the most relevant. Expression of GLUT12 is found in mouse and human brain at low levels. We previously demonstrated GLUT12 upregulation in the frontal cortex of aged subjects that was even higher in aged Alzheimer's disease (AD) patients. However, the cause and the mechanism through which this increase occurs are still unknown. Here, we aimed to investigate whether the upregulation of GLUT12 in AD is related with aging or Aß deposition in comparison with GLUT1, GLUT3, and GLUT4. In the frontal cortex of two amyloidogenic mouse models (Tg2576 and APP/PS1) GLUT12 levels were increased. Contrary, expression of GLUT1 and GLUT3 were decreased, while GLUT4 did not change. In aged mice and the senescence-accelerated model SAMP8, GLUT12 and GLUT4 were upregulated in comparison with young animals. GLUT1 and GLUT3 did not show significant changes with age. The effect of ß-amyloid (Aß) deposition was also evaluated in Aß peptide i.c.v. injected mice. In the hippocampus, GLUT12 expression increased whereas GLUT4 was not modified. Consistent with the results in the amyloidogenic models, GLUT3 and GLUT1 were downregulated. In summary, Aß increases GLUT12 protein expression in the brain pointing out a central role of the transporter in AD pathology and opening new perspectives for the treatment of this neurodegenerative disease.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/administração & dosagem , Animais , Encéfalo/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Injeções Intraventriculares , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
ACS Chem Neurosci ; 10(9): 4076-4101, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31441641

RESUMO

Here, we present a series of dual-target phosphodiesterase 9 (PDE9) and histone deacetylase (HDAC) inhibitors devised as pharmacological tool compounds for assessing the implications of these two targets in Alzheimer's disease (AD). These novel inhibitors were designed taking into account the key pharmacophoric features of known selective PDE9 inhibitors as well as privileged chemical structures, bearing zinc binding groups (hydroxamic acids and ortho-amino anilides) that hit HDAC targets. These substituents were selected according to rational criteria and previous knowledge from our group to explore diverse HDAC selectivity profiles (pan-HDAC, HDAC6 selective, and class I selective) that were confirmed in biochemical screens. Their functional response in inducing acetylation of histone and tubulin and phosphorylation of cAMP response element binding (CREB) was measured as a requisite for further progression into complete in vitro absorption, distribution, metabolism and excretion (ADME) and in vivo brain penetration profiling. Compound 31b, a selective HDAC6 inhibitor with acceptable brain permeability, was chosen for assessing in vivo efficacy of these first-in-class inhibitors, as well as studying their mode of action (MoA).


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Doença de Alzheimer/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/metabolismo , Acetilação , Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/química , Estrutura Molecular , Diester Fosfórico Hidrolases/metabolismo , Relação Estrutura-Atividade
10.
Front Aging Neurosci ; 11: 149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281249

RESUMO

The discouraging results with therapies for Alzheimer's disease (AD) in clinical trials, highlights the urgent need to adopt new approaches. Like other complex diseases, it is becoming clear that AD therapies should focus on the simultaneous modulation of several targets implicated in the disease. Recently, using reference compounds and the first-in class CM-414, we demonstrated that the simultaneous inhibition of histone deacetylases [class I histone deacetylases (HDACs) and HDAC6] and phosphodiesterase 5 (PDE5) has a synergistic therapeutic effect in AD models. To identify the best inhibitory balance of HDAC isoforms and PDEs that provides a safe and efficient therapy to combat AD, we tested the compound CM-695 in the Tg2576 mouse model of this disease. CM-695 selectively inhibits HDAC6 over class I HDAC isoforms, which largely overcomes the toxicity associated with HDAC class 1 inhibition. Furthermore, CM-695 inhibits PDE9, which is expressed strongly in the brain and has been proposed as a therapeutic target for AD. Chronic treatment of aged Tg2576 mice with CM-695 ameliorates memory impairment and diminishes brain Aß, although its therapeutic effect was no longer apparent 4 weeks after the treatment was interrupted. An increase in the presence of 78-KDa glucose regulated protein (GRP78) and heat shock protein 70 (Hsp70) chaperones may underlie the therapeutic effect of CM-695. In summary, chronic treatment with CM-695 appears to reverse the AD phenotype in a safe and effective manner. Taking into account that AD is a multifactorial disorder, the multimodal action of these compounds and the different events they affect may open new avenues to combat AD.

11.
Mol Ther Nucleic Acids ; 16: 26-37, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30825670

RESUMO

A hexanucleotide GGGGCC expansion in intron 1 of chromosome 9 open reading frame 72 (C9orf72) gene is the most frequent cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The corresponding repeat-containing sense and antisense transcripts cause a gain of toxicity through the accumulation of RNA foci in the nucleus and deposition of dipeptide-repeat (DPR) proteins in the cytoplasm of the affected cells. We have previously reported on the potential of engineered artificial anti-C9orf72-targeting miRNAs (miC) targeting C9orf72 to reduce the gain of toxicity caused by the repeat-containing transcripts. In the current study, we tested the silencing efficacy of adeno-associated virus (AAV)5-miC in human-derived induced pluripotent stem cell (iPSC) neurons and in an ALS mouse model. We demonstrated that AAV5-miC transduces different types of neuronal cells and can reduce the accumulation of repeat-containing C9orf72 transcripts. Additionally, we demonstrated silencing of C9orf72 in both the nucleus and cytoplasm, which has an added value for the treatment of ALS and/or FTD patients. A proof of concept in an ALS mouse model demonstrated the significant reduction in repeat-containing C9orf72 transcripts and RNA foci after treatment. Taken together, these findings support the feasibility of a gene therapy for ALS and FTD based on the reduction in toxicity caused by the repeat-containing C9orf72 transcripts.

12.
ACS Chem Neurosci ; 10(3): 1765-1782, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30525452

RESUMO

In order to determine the contributions of histone deacetylase (HDAC) isoforms to the beneficial effects of dual phosphodiesterase 5 (PDE5) and pan-HDAC inhibitors on in vivo models of Alzheimer's disease (AD), we have designed, synthesized, and tested novel chemical probes with the desired target compound profile of PDE5 and class I HDAC selective inhibitors. Compared to previous hydroxamate-based series, these molecules exhibit longer residence times on HDACs. In this scenario, shorter or longer preincubation times may have a significant impact on the IC50 values of these compounds and therefore on their corresponding selectivity profiles on the different HDAC isoforms. On the other hand, different chemical series have been explored and, as expected, some pairwise comparisons show a clear impact of the scaffold on biological responses (e.g., 35a vs 40a). The lead identification process led to compound 29a, which shows an adequate ADME-Tox profile and in vivo target engagement (histone acetylation and cAMP/cGMP response element-binding (CREB) phosphorylation) in the central nervous system (CNS), suggesting that this compound represents an optimized chemical probe; thus, 29a has been assayed in a mouse model of AD (Tg2576).


Assuntos
Doença de Alzheimer/tratamento farmacológico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores da Fosfodiesterase 5/farmacologia , Acetilação/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/química , Histona Desacetilases/efeitos dos fármacos , Histona Desacetilases/metabolismo , Humanos , Camundongos , Inibidores da Fosfodiesterase 5/química
13.
Neurotherapeutics ; 15(3): 742-750, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29675823

RESUMO

Drug efficacy in the central nervous system (CNS) requires an additional step after crossing the blood-brain barrier. Therapeutic agents must reach their targets in the brain to modulate them; thus, the free drug concentration hypothesis is a key parameter for in vivo pharmacology. Here, we report the impact of neurodegeneration (Alzheimer's disease (AD) and Parkinson's disease (PD) compared with healthy controls) on the binding of 10 known drugs to postmortem brain tissues from animal models and humans. Unbound drug fractions, for some drugs, are significantly different between healthy and injured brain tissues (AD or PD). In addition, drugs binding to brain tissues from AD and PD animal models do not always recapitulate their binding to the corresponding human injured brain tissues. These results reveal potentially relevant implications for CNS drug discovery.


Assuntos
Doença de Alzheimer/patologia , Antiparkinsonianos/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Doença de Parkinson/patologia , Doença de Alzheimer/tratamento farmacológico , Animais , Antiparkinsonianos/química , Antiparkinsonianos/uso terapêutico , Autopsia , Modelos Animais de Doenças , Humanos , Camundongos , Doença de Parkinson/tratamento farmacológico
14.
Eur J Med Chem ; 150: 506-524, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29549837

RESUMO

We have identified chemical probes that act as dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors (>1 log unit difference versus class I HDACs) to decipher the contribution of HDAC isoforms to the positive impact of dual-acting PDE5 and HDAC inhibitors on mouse models of Alzheimer's disease (AD) and fine-tune this systems therapeutics approach. Structure- and knowledge-based approaches led to the design of first-in-class molecules with the desired target compound profile: dual PDE5 and HDAC6-selective inhibitors. Compound 44b, which fulfilled the biochemical, functional and ADME-Tox profiling requirements and exhibited adequate pharmacokinetic properties, was selected as pharmacological tool compound and tested in a mouse model of AD (Tg2576) in vivo.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Desenho de Fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Inibidores da Fosfodiesterase 5/farmacologia , Doença de Alzheimer/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Estrutura Molecular , Neuroglia/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/síntese química , Inibidores da Fosfodiesterase 5/química , Relação Estrutura-Atividade
15.
Front Immunol ; 9: 68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29422905

RESUMO

A complex network of interactions exists between the immune, the olfactory, and the central nervous system (CNS). Inhalation of different fragrances can affect immunological reactions in response to an antigen but also may have effects on the CNS and cognitive activity. We performed an exploratory study of the immunomodulatory ability of a series of compounds representing each of the 10 odor categories or clusters described previously. We evaluated the impact of each particular odor on the immune response after immunization with the model antigen ovalbumin in combination with the TLR3 agonist poly I:C. We found that some odors behave as immunostimulatory agents, whereas others might be considered as potential immunosuppressant odors. Interestingly, the immunomodulatory capacity was, in some cases, strain-specific. In particular, one of the fragrances, carvone, was found to be immunostimulatory in BALB/c mice and immunosuppressive in C57BL/6J mice, facilitating or impairing viral clearance, respectively, in a model of a viral infection with a recombinant adenovirus. Importantly, inhalation of the odor improved the memory capacity in BALB/c mice in a fear-conditioning test, while it impaired this same capacity in C57BL/6J mice. The improvement in memory capacity in BALB/c was associated with higher CD3+ T cell infiltration into the hippocampus and increased local expression of mRNA coding for IL-1ß, TNF-α, and IL-6 cytokines. In contrast, the memory impairment in C57BL/6 was associated with a reduction in CD3 numbers and an increase in IFN-γ. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals. These results highlight the potential of studying odors as therapeutic agents for CNS-related diseases.


Assuntos
Medo/psicologia , Fatores Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Memória/efeitos dos fármacos , Monoterpenos/farmacologia , Administração por Inalação , Animais , Cognição , Condicionamento Psicológico , Monoterpenos Cicloexânicos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Fatores Imunológicos/administração & dosagem , Imunomodulação/genética , Leucócitos/efeitos dos fármacos , Leucócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monoterpenos/administração & dosagem , Odorantes , Viroses/etiologia
16.
Neuro Oncol ; 20(7): 930-941, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29373718

RESUMO

Background: Glioblastoma, the most aggressive primary brain tumor, is genetically heterogeneous. Alternative splicing (AS) plays a key role in numerous pathologies, including cancer. The objectives of our study were to determine whether aberrant AS could play a role in the malignant phenotype of glioma and to understand the mechanism underlying its aberrant regulation. Methods: We obtained surgical samples from patients with glioblastoma who underwent 5-aminolevulinic fluorescence-guided surgery. Biopsies were taken from the tumor center as well as from adjacent normal-appearing tissue. We used a global splicing array to identify candidate genes aberrantly spliced in these glioblastoma samples. Mechanistic and functional studies were performed to elucidate the role of our top candidate splice variant, BAF45d, in glioblastoma. Results: BAF45d is part of the switch/sucrose nonfermentable complex and plays a key role in the development of the CNS. The BAF45d/6A isoform is present in 85% of over 200 glioma samples that have been analyzed and contributes to the malignant glioma phenotype through the maintenance of an undifferentiated cellular state. We demonstrate that BAF45d splicing is mediated by polypyrimidine tract-binding protein 1 (PTBP1) and that BAF45d regulates PTBP1, uncovering a reciprocal interplay between RNA splicing regulation and transcription. Conclusions: Our data indicate that AS is a mechanism that contributes to the malignant phenotype of glioblastoma. Understanding the consequences of this biological process will uncover new therapeutic targets for this devastating disease.


Assuntos
Processamento Alternativo , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Fatores de Transcrição/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Movimento Celular , Proliferação de Células , Glioblastoma/metabolismo , Glioblastoma/patologia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Isoformas de Proteínas , Células Tumorais Cultivadas
17.
ACS Chem Neurosci ; 8(3): 638-661, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27936591

RESUMO

A novel systems therapeutics approach, involving simultaneous inhibition of phosphodiesterase 5 (PDE5) and histone deacetylase (HDAC), has been validated as a potentially novel therapeutic strategy for the treatment of Alzheimer's disease (AD). First-in-class dual inhibitors bearing a sildenafil core have been very recently reported, and the lead molecule 7 has proven this strategy in AD animal models. Because scaffolds may play a critical role in primary activities and ADME-Tox profiling as well as on intellectual property, we have explored alternative scaffolds (vardenafil- and tadalafil-based cores) and evaluated their impact on critical parameters such as primary activities, permeability, toxicity, and in vivo (pharmacokinetics and functional response in hippocampus) to identify a potential alternative lead molecule bearing a different chemotype for in vivo testing.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores da Fosfodiesterase 5/uso terapêutico , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/patologia , Animais , Linhagem Celular Transformada , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Leucócitos Mononucleares , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/farmacologia
18.
Neuropsychopharmacology ; 42(2): 524-539, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27550730

RESUMO

The targeting of two independent but synergistic enzymatic activities, histone deacetylases (HDACs, class I and HDAC6) and phosphodiesterase 5 (PDE5), has recently been validated as a potentially novel therapeutic approach for Alzheimer's disease (AD). Here we report the discovery of a new first-in-class small-molecule (CM-414) that acts as a dual inhibitor of PDE5 and HDACs. We have used this compound as a chemical probe to validate this systems therapeutics strategy, where an increase in the activation of cAMP/cGMP-responsive element-binding protein (CREB) induced by PDE5 inhibition, combined with moderate HDAC class I inhibition, leads to efficient histone acetylation. This molecule rescued the impaired long-term potentiation evident in hippocampal slices from APP/PS1 mice. Chronic treatment of Tg2576 mice with CM-414 diminished brain Aß and tau phosphorylation (pTau) levels, increased the inactive form of GSK3ß, reverted the decrease in dendritic spine density on hippocampal neurons, and reversed their cognitive deficits, at least in part by inducing the expression of genes related to synaptic transmission. Thus, CM-414 may serve as the starting point to discover balanced dual inhibitors with an optimal efficacy and safety profile for clinical testing on AD patients.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Plasticidade Neuronal/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/administração & dosagem , Pirazóis/uso terapêutico , Pirimidinonas/uso terapêutico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Hipocampo/fisiopatologia , Inibidores de Histona Desacetilases/farmacologia , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Cultura Primária de Células , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Pirimidinonas/administração & dosagem , Pirimidinonas/farmacologia
19.
J Med Chem ; 59(19): 8967-9004, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27606546

RESUMO

Simultaneous inhibition of phosphodiesterase 5 (PDE5) and histone deacetylases (HDAC) has recently been validated as a potentially novel therapeutic approach for Alzheimer's disease (AD). To further extend this concept, we designed and synthesized the first chemical series of dual acting PDE5 and HDAC inhibitors, and we validated this systems therapeutics approach. Following the implementation of structure- and knowledge-based approaches, initial hits were designed and were shown to validate our hypothesis of dual in vitro inhibition. Then, an optimization strategy was pursued to obtain a proper tool compound for in vivo testing in AD models. Initial hits were translated into molecules with adequate cellular functional responses (histone acetylation and cAMP/cGMP response element-binding (CREB) phosphorylation in the nanomolar range), an acceptable therapeutic window (>1 log unit), and the ability to cross the blood-brain barrier, leading to the identification of 7 as a candidate for in vivo proof-of-concept testing ( Cuadrado-Tejedor, M.; Garcia-Barroso, C.; Sánchez-Arias, J. A.; Rabal, O.; Mederos, S.; Ugarte, A.; Franco, R.; Segura, V.; Perea, G.; Oyarzabal, J.; Garcia-Osta, A. Neuropsychopharmacology 2016 , in press, doi: 10.1038/npp.2016.163 ).


Assuntos
Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/farmacologia , Acetilação/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Desenho de Fármacos , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacocinética , Histona Desacetilases/metabolismo , Humanos , Camundongos , Modelos Moleculares , Inibidores da Fosfodiesterase 5/síntese química , Inibidores da Fosfodiesterase 5/farmacocinética
20.
J Neurochem ; 136(2): 403-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26641206

RESUMO

Sildenafil (Viagra) is a selective inhibitor of phosphodiesterase type 5 (PDE5), which degrades cyclic guanosine monophosphate to the linear nucleotide. Sildenafil is acutely used in erectile dysfunction and chronically in pulmonary hypertension. Evidence in the last decade shows that sildenafil may have potential as a therapeutic option for Alzheimer's disease or other neurodegenerative disorders. The purpose of this work was to explore whether sildenafil crosses the blood-brain barrier. Pharmacokinetic properties of sildenafil in rodents were investigated using (11) C-radiolabeling followed by in vivo positron emission tomography (PET) and ex vivo tissue dissection and gamma counting. PET results in rats suggest penetration into the central nervous system. Ex vivo data in perfused animals suggest that trapping of [(11) C]sildenafil within the cerebral vascular endothelium limits accumulation in the central nervous system parenchyma. Peroral sildenafil administration to Macaca fascicularis and subsequent chemical analysis of plasma and cerebrospinal fluid (CSF) using liquid chromatography coupled with tandem mass spectrometry showed that drug content in the CSF was high enough to achieve PDE5 inhibition, which was also demonstrated by the significant increases in CSF cyclic guanosine monophosphate levels. Central actions of sildenafil include both relaxation of the cerebral vasculature and inhibition of PDE5 in neurons and glia. This central action of sildenafil may underlie its efficacy in neuroprotection models, and may justify the continued search for a PDE5 ligand suitable for PET imaging. Sildenafil interacts with phosphodiesterase type 5 (PDE5) expressed in the endothelium and/or smooth muscle cells of brain vessels and also crosses the blood-brain barrier to interact with PDE5 expressed in brain cells. At therapeutic doses, the concentration of sildenafil in the cerebrospinal fluid (CSF) is high enough to inhibit PDE5 in the neural cells (neurons and glia). In turn, the concentration of cGMP likely increases in parenchymal cells and, as shown in this report, in the CSF. Read the Editorial Highlight for this article on page 220. Cover Image for this issue: doi: 10.1111/jnc.13302.


Assuntos
GMP Cíclico/líquido cefalorraquidiano , Inibidores da Fosfodiesterase 5/farmacocinética , Citrato de Sildenafila/farmacocinética , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Cromatografia Líquida , GMP Cíclico/sangue , Rim/diagnóstico por imagem , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macaca fascicularis , Masculino , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Testículo/efeitos dos fármacos , Testículo/metabolismo , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacos , Tomógrafos Computadorizados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...